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Abstract

In the present paper some geometric aspects of the concept of non-Noether symmetry are dis-
cussed. It is shown that in regular Hamiltonian systems such a symmetry canonically leads to a Lax
pair on the algebra of linear operators on cotangent bundle over the phase space. Correspondence
between the non-Noether symmetries and other wide spread geometric methods of generating con-
servation laws such as bi-Hamiltonian formalism, bidifferential calculi and Frölicher–Nijenhuis
geometry is considered. It is proved that the integrals of motion associated with the continuous
non-Noether symmetry are in involution whenever the generator of the symmetry satisfies a certain
Yang–Baxter type equation.
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Recently non-Noether symmetries were actively discussed by several authors[3,9,11,13]
and some new interesting results has been obtained. Here we would like to shed more
light on geometric aspects of the concept of non-Noether symmetry and to emphasize
influence of such a symmetries on the phase space geometry. Partially the motivation for
studying these issues comes from the theory of integrable models that essentially relies on
different geometric structures used in construction of the conservation laws and the invariant
Lagrangian submanifolds. Among them are Frölicher–Nijenhuis operators, bi-Hamiltonian
systems, Lax pairs and bicomplexes. Unfortunately these important structures carry no
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direct physical content and are considered as a purely mathematical constructions resulting
the conservation laws, but it seems that they could be related to the symmetries of the
dynamical systems. In the present paper we would like to show that in Hamiltonian systems
presence of certain non-Noether symmetries canonically leads to the above mentioned Lax
pairs, Frölicher–Nijenhuis operators, bi-Hamiltonian structures, bicomplexes and a number
of conservation laws.

We first recall some basic knowledge of the Hamiltonian dynamics. The phase space of a
regular Hamiltonian system is a Poisson manifold—a smooth finite-dimensional manifold
equipped with the Poisson bivector fieldW subjected to the following condition:

[W,W ] = 0, (1)

where square bracket stands for Schouten bracket or supercommutator (for simplicity further
it will be referred as commutator). In a standard manner Poisson bivector field defines a Lie
bracket on the algebra of observables (smooth real-valued functions on phase space) called
Poisson bracket:

{f, g} = W(df ∧ dg) = LW(f)g = −LW(g)f, (2)

whereW(f ) andW(g) are Hamiltonian vector fields associated with the functionsf and
g, respectively, whileL denotes Lie derivative. Skew symmetry of the bivector fieldW

provides the skew symmetry of the corresponding Poisson bracket and the condition(1)
ensures that for every triple(f, g, h) of smooth functions on the phase space the Jacobi
identity

{f {g, h}} + {h{f, g}} + {g{h, f }} = 0 (3)

is satisfied. We also assume that the dynamical system under consideration is regular—the
bivector fieldW has maximal rank, i.e. itsnth outer power, wheren is a half-dimension
of the phase space, does not vanishWn �= 0. In this caseW gives rise to a well known
isomorphismΦW between the differential 1-forms and the vector fields defined by

ΦW(u) = W(u) (4)

for every 1-formu.
Time evolution of observables is governed by the Hamilton’s equation

d

dt
f = {h, f }, (5)

whereh is some fixed smooth function on the phase space called Hamiltonian. Let us recall
that each vector fieldE on the phase space generates the one-parameter continuous group
of transformations (flow)ga = eaLE that acts on the observables as follows:

ga(f ) = eaLE(f ) = f + aLEf + 1
2a

2L2
Ef + · · · . (6)

Such a group of transformation is called symmetry of Hamilton’sequation (5)if it commutes
with time evolution operator

d

dt
ga(f ) = ga

(
d

dt
f

)
(7)
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or

LW(h)ga(f ) = ga(LW(h)f ) (8)

that is possible only if the generatorE of the group commutes withW(h) = {h, ·}, i.e. if

[E,W(h)] = 0. (9)

Symmetry is said to be Noether if its generator is Hamiltonian vector field (by its definition
every Hamiltonian vector fieldE could be represented in the formE = W(f ) = {f, ·} for
some smooth functionf on phase space and, according to Liouville’s theorem, such a vector
fields preserve Poisson bivector, [E,W ] = 0) and non-Noether whenever its generator is
non-Hamiltonian, [E,W ] �= 0. Let us focus on non-Noether symmetries. We would like
to show that the presence of such a symmetry could essentially enrich the geometry of the
phase space and under the certain conditions could ensure integrability of the dynamical
system. Before we proceed let us recall that the non-Noether symmetry leads to a number
of integrals of motion[13] (see also[2,3,9,11,12]). More precisely the relationship between
non-Noether symmetries and the conservation laws is described by the following theorem.

Theorem 1. Let (M, h) be a regular Hamiltonian system on the2n-dimensional Poisson
manifold M. Then, if the vector field E generates non-Noether symmetry, the functions

Y(k) = Ŵk ∧ Wn−k

Wn
, k = 1,2, . . . , n, (10)

whereŴ = [E,W ], are integrals of motion.

Proof. By the definition

Ŵk ∧ Wn−k = Y(k)Wn. (11)

Let us take the Lie derivative of this expression along the vector fieldW(h),

[W(h), Ŵk ∧ Wn−k] = d

dt
(Y(k))Wn + Y(k)[W(h),Wn] (12)

or

k[W(h), Ŵ ] ∧ Ŵk−1 ∧ Wn−k + (n − k)[W(h),W ] ∧ Ŵk ∧ Wn−k−1

= d

dt
(Y(k))Wn + nY(k)[W(h),W ] ∧ Wn−1, (13)

but according to the Liouville theorem the Hamiltonian vector field preservesW , i.e.

[W(h),W ] = 0, (14)

hence, by taking into account that [W(h),E] = 0 we get

[W(h), Ŵ ] = [W(h)[E,W ]] = [W [W(h),E]] + [E[W,W(h)]] = 0, (15)

and as a result(13) yields

d

dt
Y (k)Wn = 0, (16)
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but since the dynamical system is regular (Wn �= 0) we obtain that the functionsY(k) are
integrals of motion. �

Remark 1. Instead of conserved quantitiesY(1) · · ·Y(n), the solutionsc1 · · · cn of the sec-
ular equation

(Ŵ − cW)n = 0 (17)

could be associated with the generator of symmetry. By expanding expression(17) it is
easy to verify that the integrals of motionY(k) can be expressed in terms of the functions
c1 · · · cn in the following form:

Y(k) = (n − k)!k!

n!

∑
ip �=is

ci1ci2 · · · cik . (18)

Presence of the non-Noether symmetry not only leads to a sequence of conservation
laws, but also endows the phase space with a number of interesting geometric structures
and it appears that such a symmetry is related to many important concepts used in theory
of dynamical systems. One of the such concepts is Lax pair. Let us recall that Lax pair of
Hamiltonian system on Poisson manifoldM is a pair(L, P) of smooth functions onM with
values in some Lie algebrag such that the time evolution ofL is governed by the following
equation:

d

dt
L = [L,P ], (19)

where [·, ·] is a Lie bracket ong. It is well known that each Lax pair leads to a number of
conservation laws. Wheng is some matrix Lie algebra the conservation laws are just traces
of powers ofL

I(k) = Tr(Lk). (20)

It is remarkable that each generator of the non-Noether symmetry canonically leads to the
Lax pair of a certain type. In the local coordinatesza, where the bivector fieldW and the
generator of the symmetryE have the following form:

W =
∑
ab

Wab
∂

∂za
∧ ∂

∂zb
, E =

∑
a

Ea

∂

∂za
(21)

corresponding Lax pair could be calculated explicitly. Namely we have the following the-
orem.

Theorem 2. Let (M, h) be a regular Hamiltonian system on the2n-dimensional Poisson
manifold M. Then, if the vector field E on M generates the non-Noether symmetry, the
following2n × 2n matrix-valued functions on M:

Lab =
∑
dc

(W−1)ad

(
Ec

∂Wdb

∂zc
− Wcb

∂Ed

∂zc
+ Wdc

∂Eb

∂zc

)
, (22)
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Pab =
∑
c

(
∂Wbc

∂za

∂h

∂zc
+ Wbc

∂2h

∂za∂zc

)
, (23)

form the Lax pair(19)of the dynamical system(M, h).

Proof. Let us consider the following operator on a space of 1-forms:

R̄E(u) = Φ−1
W ([E,ΦW(u)]) − LEu (24)

(hereΦW is the isomorphism(4)). It is obvious that̄RE is a linear operator and it is invariant
since the evolution operatorW(h) commutes with bothΦW (as far as [W(h),W ] = 0) and
E (becauseE generates symmetry [E,W(h)] = 0). In the terms of the local coordinates
R̄E has the following form:

R̄E =
∑
ab

Lab dza ⊗ ∂

∂zb
(25)

and the invariance condition

d

dt
R̄E = LW(h)R̄E = 0 (26)

yields

d

dt
R̄E = d

dt

∑
ab

Lab dza ⊗ ∂

∂zb

=
∑
ab

(
d

dt
Lab

)
dza ⊗ ∂

∂zb
+
∑
ab

Lab(LW(h) dza) ⊗ ∂

∂zb

+
∑
ab

Lab dza ⊗
(
LW(h)

∂

∂zb

)

=
∑
ab

(
d

dt
Lab

)
dza ⊗ ∂

∂zb
+
∑
abcd

Lab∂c(Wad∂dh)dzc ⊗ ∂

∂zb

+
∑
abcd

Lab∂b(Wcd∂dh)dza ⊗ ∂

∂zc

=
∑
ab

(
d

dt
Lab +

∑
c

(PacLcb − LacPcb)

)
dza ⊗ ∂

∂zb
= 0 (27)

or in matrix notations

d

dt
L = [L,P ]. (28)

So, we have proved that the non-Noether symmetry canonically yields a Lax pair on the
algebra of linear operators on cotangent bundle over the phase space. �
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Remark 2. The conservation laws(20)associated with the Lax pair(28)can be expressed
in terms of the integrals of motionci in quite simple way:

I(k) = Tr(Lk) =
∑
i

cki . (29)

This correspondence follows fromEq. (17)and the definition of the operatorRE (24).

Now let us focus on the integrability issues. We know thatn integrals of motion are asso-
ciated with each generator of non-Noether symmetry and according to the Liouville–Arnold
theorem Hamiltonian system is completely integrable if it possessesn functionally inde-
pendent integrals of motion in involution (two functionsf andg are said to be in involution
if their Poisson bracket vanishes{f, g} = 0). Generally speaking the conservation laws
associated with symmetry might appear to be neither independent nor involutive. However,
it is reasonable to ask the question—what condition should be satisfied by the generator
of the symmetry to ensure the involutivity ({Y(k), Y(m)} = 0) of conserved quantities? In
Lax theory such a condition is known as classical Yang–Baxter equation (CYBE). Since
involutivity of the conservation laws is closely related to the integrability it is essential to
have some analog of CYBE for the generator of non-Noether symmetry. To address this
issue we would like to propose the following theorem.

Theorem 3. If the vector field E on2n-dimensional Poisson manifold M satisfies the con-
dition

[[E[E,W ]]W ] = 0 (30)

and W bivector field has maximal rank(Wn �= 0) then the functions(10)are in involution

{Y(k), Y(m)} = 0. (31)

Proof. First of all let us note that the identity(1) satisfied by the Poisson bivector fieldW
is responsible for the Liouville theorem

[W,W ] = 0 ⇔ LW(f )W = [W(f ),W ] = 0. (32)

By taking the Lie derivative of the expression(1) we obtain another useful identity

LE[W,W ] = [E[W,W ]] = [[E,W ]W ] + [W [E,W ]] = 2[Ŵ,W ] = 0. (33)

This identity gives rise to the following relation:

[Ŵ,W ] = 0 ⇔ [Ŵ(f ),W ] = −[Ŵ,W(f )] (34)

and finally condition(30)ensures third identity

[Ŵ, Ŵ ] = 0 (35)

yielding Liouville theorem forŴ

[Ŵ, Ŵ ] = 0 ⇔ [Ŵ(f ), Ŵ ] = 0. (36)
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Indeed

[Ŵ, Ŵ ] = [[E,W ]Ŵ ] = [[Ŵ, E]W ] = −[[E, Ŵ ]W ] = −[[E[E,W ]]W ] = 0. (37)

Now let us consider two different solutionsci �= cj of Eq. (17). By taking the Lie derivative
of the equation

(Ŵ − ciW)n = 0 (38)

along the vector fieldsW(cj) andŴ(cj) and using Liouville theorem forW andŴ bivectors
we obtain the following relations:

(Ŵ − ciW)n−1(LW(cj)Ŵ − {cj, ci}W) = 0 (39)

and

(Ŵ − ciW)n−1(ciLŴ(cj)
W + {cj, ci}•W) = 0, (40)

where

{ci, cj}• = Ŵ(dci ∧ dcj) (41)

is the Poisson bracket calculated by means of the bivector fieldŴ . Now multiplying (39)
by ci subtracting(40)and using identity(34)gives rise to

({ci, cj}• − cj{ci, cj})(Ŵ − ciW)n−1W = 0. (42)

Thus, either

{ci, cj}• − cj{ci, cj} = 0 (43)

or the volume field(Ŵ − ciW)n−1W vanishes. In the second case we can repeat(39)–(42)
procedure for the volume field(Ŵ − ciW)n−1W yielding aftern iterationsWn = 0 that
according to our assumption (that the dynamical system is regular) is not true. As a result
we arrived at(43)and by the simple interchange of indicesi ↔ j we get

{ci, cj}• − ci{ci, cj} = 0. (44)

Finally by comparing(43) and (44)we obtain that the functionsci are in involution with
respect to the both Poisson structures (sinceci �= cj)

{ci, cj}• = {ci, cj} = 0 (45)

and according to(18) the same is true for the integrals of motionY(k). �

Corollary 1. Each generator of non-Noether symmetry satisfyingEq. (30)endows dynam-
ical system with the bi-Hamiltonian structure[1,3,4,8,10]—couple(W, Ŵ) of compatible
([W, Ŵ ] = 0) Poisson([W,W ] = [Ŵ, Ŵ ] = 0) bivector fields.

It often happens thatn conservation laws associated with the generator of non-Noether
symmetry appear to be functionally independent, involutive and ensure the integrability of
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the dynamical system. Such examples are especially interesting in the case of infinite-
dimensional Hamiltonian systems, where a single generator of non-Noether symmetry
yields infinite number of integrals of motion (note that, regardless the dimension of the
phase space, the generator of Noether symmetry reproduces only one conservation law).
Let us consider well known infinite-dimensional Hamiltonian system—Korteweg–de Vries
equation.

Example 1. KdV equation not only possesses infinite number of conservation laws in
involution, but also could be endowed with bi-Hamiltonian structure[14], admits Lax pair
formulation and has many interesting geometric properties. Let us recall that the KdV
equation

ut + uxxx + uux = 0 (46)

(hereu = u(t, x) is a smooth real-valued function subjected to the boundary conditions
u(t,±∞) = 0) is a Hamilton’sequation (5)on infinite-dimensional Poisson manifold with
corresponding Hamiltonian equal to

h =
∫ +∞

−∞

(
u3

3
− u2

x

)
dx (47)

and Poisson bivector field

W =
∫ +∞

−∞
dx

δ

δu
∧ δ

δv
, v =

∫ x

−∞
u(ξ)dξ, (48)

whereδ/δu denotes variational derivative with respect tou. Observables are smooth func-
tionals ofu and its spatial derivativesux,uxx, etc. Each vector fieldE generates infinitisimal
transformationgε of algebra of observables defined, for every functionalF , by the equation

gε(F) = 1 + εE(F) + O(ε). (49)

Like in the finite-dimensional case such a transformation is called symmetry of the Hamilton’s
equation if it commutes with time evolution operator

gε

(
d

dt
F

)
= d

dt
gε(F). (50)

Quite recently it appeared that KdV equation possesses hidden non-Noether symmetry[3]
generated by the vector field

E =
∫ +∞

−∞
dx(uxx + 1

3u
2)

δ

δu
+ XH (51)
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(whereXH is the Hamiltonian part of symmetry generator, see[3]). This symmetry gives
rise to the well known infinite sequence of conservation laws of KdV equation

I(1) =
∫ +∞

−∞
udx, I(2) =

∫ +∞

−∞
u2 dx, I(3) =

∫ +∞

−∞

(
u3

3
− u2

x

)
dx,

I(4) =
∫ +∞

−∞

(
5

36
u4 − 5

3
uu2

x + u2
xx

)
dx,

I(5) =
∫ +∞

−∞

(
7

108
u5 − 35

18
u2u2

x + 7

3
uu2

xx − u2
xxx

)
dx,

I(6) =
∫ +∞

−∞

(
7

216
u6 − 35

18
u3u2

x + 7

2
u2u2

xx − 35

36
u4
x − 3uu2

xxx + 10

3
u3

xx − u2
xxxx

)
dx.

(52)

It is easy to verify that the vector fieldE satisfies condition(30) and due toTheorem 3
(strictly speaking the Poisson manifold inTheorems 1–3is finite dimensional and extension
of the main results to the infinite-dimensional case requires additional explanation and
justification that lays outside the scope of present article) the conservation laws of KdV
equation are in involution. Functional independence of conservation laws is obvious so
in this case the symmetry is responsible for integrability. According toTheorem 2this
symmetry canonically leads to a Lax pair, that appears to be known as KdV Lax pair:

L = ∂2
x + 1

6u, (53)

P = ∂3
x + 1

6(u∂x + ux), (54)

while the operator̄RE exactly reproduces Lenard recursion operator

R̄E =
∫ +∞

−∞
dx

(
δuxx ⊗ δ

δu
+ 2

3
uδu ⊗ δ

δu

)
. (55)

Due to corollary ofTheorem 3the phase space of KdV equation is endowed with a
bi-Hamiltonian structure[3] that coincides with the one discovered by Magri[14].

Another concept that is often used in theory of dynamical systems and could be re-
lated to the non-Noether symmetry is the bidifferential calculus (bicomplex approach).
Recently Dimakis and Müller-Hoissen applied bidifferential calculi to the wide range of
integrable models including KdV hierarchy, KP equation, self-dual Yang–Mills equation,
Sine–Gordon equation, Toda models, and non-linear Schrödinger and Liouville equations. It
turns out that these models can be effectively described and analyzed using the bidifferential
calculi [4,6,7,10].

Under the bidifferential calculus we mean the graded algebra of differential forms

Ω =
∞⋃
k=0

Ω(k) (56)

(Ω(k) denotes the space ofk-degree differential forms) equipped with a couple of differential
operators

d, d̃ : Ω(k) → Ω(k+1) (57)
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satisfying d2 = d̃2 = dd̃ + d̃d = 0 conditions (see[6,7]). It is interesting that if generator
of the non-Noether symmetry satisfiesEq. (30)then we are able to construct an invariant
bidifferential calculus of a certain type. This construction is summarized in the following
theorem.

Theorem 4. Let(M, h) be a regular Hamiltonian system on the Poisson manifold M. Then,
if the vector field E on M generates the non-Noether symmetry and satisfiesEq. (30), the
differential operators

du = Φ−1
W ([W,ΦW(u)]), (58)

d̃u = Φ−1
W ([[E,W ]ΦW(u)]) (59)

form invariant bidifferential calculus(d2 = d̃2 = dd̃+ d̃d = 0) over the graded algebra of
differential forms on M.

Proof. First of all we have to show that d andd̃ are really differential operators, i.e. they
are linear maps fromΩ(k) into Ω(k+1), satisfy derivation property and are nilpotent (d2 =
d̃2 = 0). Linearity is obvious and follows from the linearity of the Schouten bracket [·, ·]
andΦW , Φ−1

W maps. Then, ifu is a k-degree formΦW maps it onk-degree multivector
field and the Schouten brackets [W,ΦW(u)] and [[E,W ]ΦW(u)] result the (k + 1)-degree
multivector fields that are mapped to (k + 1)-degree differential forms byΦ−1

W . So, d and̃d
are linear maps fromΩ(k) into Ω(k+1). Derivation property follows from the same feature
of the Schouten bracket [·, ·] and linearity ofΦW andΦ−1

W maps. Now we have to prove the
nilpotency of d and̃d. Let us consider d2u

d2u = Φ−1
W ([W,ΦW(Φ−1

W ([W,ΦW(u)]))]) = Φ−1
W ([W [W,ΦW(u)]]) = 0 (60)

as a result of the property(32)and the Jacobi identity for [·, ·] bracket. In the same manner

d̃2u = Φ−1
W ([[W,E][[W,E]ΦW(u)]]) = 0 (61)

according to the property(36) of [W,E] = Ŵ and the Jacobi identity. Thus, we have
proved that d and̃d are differential operators (in fact d is ordinary exterior differential and
the expression(58) is its well known representation in terms of Poisson bivector field). It
remains to show that the compatibility condition dd̃+ d̃d = 0 is fulfilled. Using definitions
of d, d̃ and the Jacobi identity we get

(dd̃ + d̃d)(u) = Φ−1
W ([[[W,E]W ]ΦW(u)]) = 0 (62)

as far as(34)is satisfied. So, d and̃d form the bidifferential calculus over the graded algebra
of differential forms. It is also clear that the bidifferential calculus d, d̃ is invariant, since
both d and̃d commute with time evolution operatorW(h) = {h, ·}. �

Remark 3. Conservation laws that are associated with the bidifferential calculus(58) and
(59)and form Lenard scheme (see[6,7]):

d̃I(k) = dI(k+1) (63)
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coincide with the sequence of integrals of motion(29). Proof of this correspondence lay
outside the scope of present article, but could be done in the manner similar to[4].

Finally we would like to reveal some features of the operatorR̄E (24) and to show how
Frölicher–Nijenhuis geometry could arise in Hamiltonian system that possesses certain
non-Noether symmetry. From the geometric properties of the tangent-valued forms we
know[5] that the traces of powers of a linear operatorF on tangent bundle are in involution
whenever its Frölicher–Nijenhuis torsionT(F) vanishes, i.e. whenever for arbitrary vector
fieldsX, Y the condition

T(F)(X, Y) = [FX,FY] − F([FX, Y ] + [X,FY] − F [X, Y ]) = 0 (64)

is satisfied. Torsionless forms are also called Frölicher–Nijenhuis operators and are widely
used in theory of integrable models[5]. We would like to show that each generator of
non-Noether symmetry satisfyingEq. (30)canonically leads to invariant Frölicher–Nijenhuis
operator on tangent bundle over the phase space. Strictly speaking we have the following
theorem.

Theorem 5. Let (M, h) be a regular Hamiltonian system on the Poisson manifold M. If
the vector field E on M generates the non-Noether symmetry and satisfiesEq. (30)then the
linear operator, defined for every vector field X by equation

RE(X) = ΦW(LEΦ
−1
W (X)) − [E,X] (65)

is invariant Frölicher–Nijenhuis operator on M.

Proof. Invariance ofRE follows from the invariance of thēRE defined by(24) (note that
for arbitrary 1-form vector fieldu and vector fieldX contractioniXu has the property
iREXu = iXR̄Eu, soRE is actually transposed tōRE). It remains to show that the condition
(30) ensures vanishing of the Frölicher–Nijenhuis torsionT(RE) of RE, i.e. for arbitrary
vector fieldsX, Y

T(RE)(X, Y) = [RE(X),RE(Y)] − RE([RE(X), Y ]

+[X,RE(Y)] − RE([X, Y ])) = 0. (66)

First let us introduce the following auxiliary 2-forms:

ω = Φ−1
W (W), ω• = R̄Eω, ω•• = R̄Eω

•. (67)

Using the realization(58)of the differential d and the property(1) yields

dω = Φ−1
W ([W,W ]) = 0. (68)

Similarly, using the property(34)we obtain

dω• = dΦ−1
W ([E,W ]) − dLEω = Φ−1

W ([[E,W ]W ]) − LE dω = 0. (69)

And finally, taking into account thatω• = 2Φ−1
W ([E,W ]) and using the condition(30), we

get

dω•• = 2Φ−1
W ([[E[E,W ]]W ]) − 2 dLEω

• = −2LE dω• = 0. (70)
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So the differential formsω,ω•, ω•• are closed

dω = dω• = dω•• = 0. (71)

Now let us consider the contraction ofT(RE)(X, Y) andω.

iT(RE)(X,Y)ω = i[REX,REY ]ω − i[REX,Y ]ω
• − i[X,REY ]ω

• + i[X,Y ]ω
••

= LREXiYω
• − iREYLXω

• − LREXiYω
• + iYLREXω

•

−LXiREYω
• + iREYLXω

• + i[X,Y ]ω
••

= iYLXω
•• − LXiYω

•• + i[X,Y ]ω
•• = 0, (72)

where we used(25) and (26), the property of the Lie derivative

LXiYω = iYLXω + i[X,Y ]ω (73)

and the relations of the following type:

LREXω = diREXω + iREX dω = diXω
• = LXω

• − iX dω• = LXω
•. (74)

So we proved that for arbitrary vector fieldsX, Y the contraction ofT(RE)(X, Y) andω
vanishes. But sinceW bivector is non-degenerate (Wn �= 0), its counter image

ω = Φ−1
W (W) (75)

is also non-degenerate and vanishing of the contraction(72) implies that the torsionT(RE)

itself is zero. So we get

T(RE)(X, Y) = [RE(X),RE(Y)] − RE([RE(X), Y ]

+[X,RE(Y)] − RE([X, Y ])) = 0. � (76)

In summary let us note that the non-Noether symmetries form quite interesting class of
symmetries of Hamiltonian dynamical system and lead not only to a number of conservation
laws (that under certain conditions ensure integrability), but also enrich the geometry of the
phase space by endowing it with several important structures, such as Lax pair, bicomplex,
bi-Hamiltonian structure, Frölicher–Nijenhuis operators, etc. The present paper attempts
to emphasize deep relationship between different concepts used in construction of con-
servation laws and non-Noether symmetry. Example of KdV equation suggests that many
mysterious objects (for instance, Lenard recursion operator, Lax pair and bi-Hamiltonian
structure of KdV equation), that often carry no direct physical content and are considered
as purely mathematical constructions resulting the conservation laws, could be regarded as
a manifestation of the non-Noether symmetry.
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