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Abstract

In the present paper some geometric aspects of the concept of non-Noether symmetry are dis-
cussed. Itis shown that in regular Hamiltonian systems such a symmetry canonically leads to a Lax
pair on the algebra of linear operators on cotangent bundle over the phase space. Correspondence
between the non-Noether symmetries and other wide spread geometric methods of generating con-
servation laws such as bi-Hamiltonian formalism, bidifferential calculi and Frélicher—Nijenhuis
geometry is considered. It is proved that the integrals of motion associated with the continuous
non-Noether symmetry are in involution whenever the generator of the symmetry satisfies a certain
Yang—Baxter type equation.
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Recently non-Noether symmetries were actively discussed by several 8tBqgt§,13]

and some new interesting results has been obtained. Here we would like to shed more
light on geometric aspects of the concept of non-Noether symmetry and to emphasize
influence of such a symmetries on the phase space geometry. Partially the motivation for
studying these issues comes from the theory of integrable models that essentially relies on
different geometric structures used in construction of the conservation laws and the invariant
Lagrangian submanifolds. Among them are Frélicher—Nijenhuis operators, bi-Hamiltonian

systems, Lax pairs and bicomplexes. Unfortunately these important structures carry no
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direct physical content and are considered as a purely mathematical constructions resulting
the conservation laws, but it seems that they could be related to the symmetries of the
dynamical systems. In the present paper we would like to show that in Hamiltonian systems
presence of certain non-Noether symmetries canonically leads to the above mentioned Lax
pairs, Frolicher—Nijenhuis operators, bi-Hamiltonian structures, bicomplexes and a number
of conservation laws.

We first recall some basic knowledge of the Hamiltonian dynamics. The phase space of a
regular Hamiltonian system is a Poisson manifold—a smooth finite-dimensional manifold
equipped with the Poisson bivector fiékd subjected to the following condition:

[W, W] =0, 1)

where square bracket stands for Schouten bracket or supercommutator (for simplicity further
it will be referred as commutator). In a standard manner Poisson bivector field defines a Lie
bracket on the algebra of observables (smooth real-valued functions on phase space) called
Poisson bracket:

{fgl=Wdf Adg)=Lwpg=—Lwyl (2

whereW( ) and W(g) are Hamiltonian vector fields associated with the functigrend

g, respectively, whileL denotes Lie derivative. Skew symmetry of the bivector figid
provides the skew symmetry of the corresponding Poisson bracket and the cofibjtion
ensures that for every triplef, g, h) of smooth functions on the phase space the Jacobi
identity

{f{g 3} +{h{f g}} + {gfh, f}} =0 3)

is satisfied. We also assume that the dynamical system under consideration is regular—the
bivector fieldW has maximal rank, i.e. itsth outer power, where is a half-dimension

of the phase space, does not vaniBh # 0. In this casé¥ gives rise to a well known
isomorphism®y, between the differential 1-forms and the vector fields defined by

Pw(u) = W(u) 4)

for every 1-formu.
Time evolution of observables is governed by the Hamilton’s equation

d
g/ =1 ®)

whereh is some fixed smooth function on the phase space called Hamiltonian. Let us recall
that each vector fiel& on the phase space generates the one-parameter continuous group
of transformations (flow}, = €% that acts on the observables as follows:

ga(f) =€ E(f) = f+alpf+ 3a’Lif +---. ©6)

Such agroup of transformation is called symmetry of Hamiltenisation (5)f it commutes
with time evolution operator

d d
aga(f) = 8a (af) (7
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or
Lwn)8a(f) = ga(Lwn) f) ®)

that is possible only if the generatérof the group commutes witW(h) = {h, -}, i.e. if
[E, W(h)] = 0. 9)

Symmetry is said to be Noether if its generator is Hamiltonian vector field (by its definition
every Hamiltonian vector fiel& could be represented in the forth= W(f) = {f, -} for

some smooth functioyi on phase space and, according to Liouville’s theorem, such a vector
fields preserve Poisson bivectoE,[W] = 0) and non-Noether whenever its generator is
non-Hamiltonian, E, W] # 0. Let us focus on non-Noether symmetries. We would like

to show that the presence of such a symmetry could essentially enrich the geometry of the
phase space and under the certain conditions could ensure integrability of the dynamical
system. Before we proceed let us recall that the non-Noether symmetry leads to a number
of integrals of motiori13] (see als¢2,3,9,11,12]. More precisely the relationship between
non-Noether symmetries and the conservation laws is described by the following theorem.

Theorem 1. Let (M, k) be a regular Hamiltonian system on tBe-dimensional Poisson
manifold M. Thenif the vector field E generates non-Noether symmétiyfunctions

Y(k) _ Wk A Wn—k

g k=12 (10)

whereW = [E, W], are integrals of motion
Proof. By the definition

WA wr* = y®wn, (11)
Let us take the Lie derivative of this expression along the vector ¥i&lg),

[W(h), WK A WK = %(Y(k))W" + Y®O[w(n), w"] (12)
or

K[W(h), W] A WKL A WK 4 (n — )[W(h), W] A WE A whh1

= %(Y(k))W" +nY®[W(h), W] A WL, (13)

but according to the Liouville theorem the Hamiltonian vector field preséidse.

[W(h), W] =0, (14)
hence, by taking into account tha¥{h), E] = 0 we get

[W(h), W) = [W(D[E, W]] = [W[W(h), E]) + [E[W, W(h)]] = O, (15)

and as a resu(tl3) yields

d
—yWwn =, 16
o (16)
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but since the dynamical system is regulé#’(# 0) we obtain that the functions® are

integrals of motion. O
Remark 1. Instead of conserved quantiti&s - - - Y™ the solutiong:; - - - ¢, of the sec-
ular equation

could be associated with the generator of symmetry. By expanding expré&gioihis
easy to verify that the integrals of motiagff®’ can be expressed in terms of the functions
c1- -+ ¢y in the following form:

(n — k)k!
Y(k) = — Z CiyCip * " * Ciy- (18)
n! hyrr}

Presence of the non-Noether symmetry not only leads to a sequence of conservation
laws, but also endows the phase space with a number of interesting geometric structures
and it appears that such a symmetry is related to many important concepts used in theory
of dynamical systems. One of the such concepts is Lax pair. Let us recall that Lax pair of
Hamiltonian system on Poisson manifdiiis a pair(L, P) of smooth functions oM with
values in some Lie algebgasuch that the time evolution @f is governed by the following
equation:

d
dr
where [, -] is a Lie bracket ory. It is well known that each Lax pair leads to a number of

conservation laws. Whegis some matrix Lie algebra the conservation laws are just traces
of powers ofL

10 =Tr(L"). (20)

=[L, P], (29)

It is remarkable that each generator of the non-Noether symmetry canonically leads to the
Lax pair of a certain type. In the local coordinatgs where the bivector field and the
generator of the symmetrzy have the following form:

0

W= Z Wab— A— E=Y E,— (21)

0Z4 az,, - 8za

corresponding Lax pair could be calculated explicitly. Namely we have the following the-
orem.

Theorem 2. Let (M, h) be a regular Hamiltonian system on tRe-dimensional Poisson
manifold M. Thenif the vector field E on M generates the non-Noether symmttey
following 2n x 2n matrix-valued functions on M

1% oE oE
<E db d b)

—_— + W,
¢ 920 9z dc 9z,

Lap = Z(W_l)ad (22)

dc
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Wpe 0h 92h
Par=3" (—C— + Whe ) , (23)
C

0Za 0Z¢ 02,0z¢

form the Lax pain(19) of the dynamical syste/, i).

Proof. Let us consider the following operator on a space of 1-forms:
Rew) = &3 (E, dww)]) — Liu (24

(heredyy is the isomorphisn)). Itis obvious thaiR is a linear operator and it is invariant
since the evolution operatd¥(h) commutes with botl®y, (as far as W(k), W] = 0) and

E (becauset generates symmetnE] W(h)] = 0). In the terms of the local coordinates
RE has the following form:

Rp =Y Lapdz, ® 5 (25)
ab

and the invariance condition

d- -
g Re=LwwRe=0 (26)

yields

d. d 9
“ Ry = — L —
TRT Z ablza ® 7

d d
= L d — Lap(L d —
Z( ab) Za ® o2 + % ab(Lwn) dzy) @ .
d
+ Z Lapdz, ® (LW(11)£>
- Z ( ab) G0 ® — + 3 Ladle(Wagdah) Gze ® ——
0zp

abcd 9zb

+ 2 Landp(Weadah) dea ® ~—

abed Ze
= Z ( Lap + Z(Pachb - LacPcb)> dz, ® ib =0 (27)
or in matrix notations
L= P (28)

So, we have proved that the non-Noether symmetry canonically yields a Lax pair on the
algebra of linear operators on cotangent bundle over the phase space. O
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Remark 2. The conservation law@0) associated with the Lax pai28) can be expressed
in terms of the integrals of motia#) in quite simple way:

10 =Tr(1*) =) cf. (29)

This correspondence follows froEq. (17)and the definition of the operat®g (24).

Now let us focus on the integrability issues. We know thattegrals of motion are asso-
ciated with each generator of non-Noether symmetry and according to the Liouville—Arnold
theorem Hamiltonian system is completely integrable if it posses$esctionally inde-
pendent integrals of motion in involution (two functiofigndg are said to be in involution
if their Poisson bracket vanish¢g ¢} = 0). Generally speaking the conservation laws
associated with symmetry might appear to be neither independent nor involutive. However,
it is reasonable to ask the question—what condition should be satisfied by the generator
of the symmetry to ensure the involutivity{®, Y™} = 0) of conserved quantities? In
Lax theory such a condition is known as classical Yang—Baxter equation (CYBE). Since
involutivity of the conservation laws is closely related to the integrability it is essential to
have some analog of CYBE for the generator of non-Noether symmetry. To address this
issue we would like to propose the following theorem.

Theorem 3. If the vector field E or2z-dimensional Poisson manifold M satisfies the con-
dition

[[E[E, W]]W] =0 (30)
and W bivector field has maximal raiW” = 0) then the function§10) are in involution

(y® ymy = o (31)
Proof. First of all let us note that the identityt) satisfied by the Poisson bivector figld
is responsible for the Liouville theorem

[W,W]=0< LwpW =[W(f), W] =0. (32)
By taking the Lie derivative of the expressi¢l) we obtain another useful identity

Le[W, W] = [E[W, W]] = [[E, WIW] + [W[E, W]] = 2[W, W] =0. (33)
This identity gives rise to the following relation:

[W, W] =0 & [W(f), W] = —[W, W(f)] (34)
and finally condition(30) ensures third identity

[W, W] =0 (35)
yielding Liouville theorem forV

[W, W] =0« [W(f), W] =0. (36)
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Indeed
[W, W] =[[E, WIW] = [[W, E]W] = —[[E, W]W] = —[[E[E, W]]W] = 0. (37)

Now let us consider two different solutions# c¢; of Eq. (17) By taking the Lie derivative
of the equation

W —eW)" =0 (38)

along the vector field®/(c;) andW(cj) and using Liouville theorem fav andW bivectors
we obtain the following relations:

(W — W) M LwepW — {cj, ci}W) =0 (39)
and

(W — W) HeiL gy W+ ¢j ci)a W) = 0, (40)
where

{ci, cjle = W(de; Adc)) (41)

is the Poisson bracket calculated by means of the bivectorielMow multiplying (39)
by ¢; subtracting40) and using identityf34) gives rise to

(eis ¢jle — cjilei, e DW — W) 1w = 0. (42)
Thus, either
{ci,cjle —cjlci,cj} =0 (43)

or the volume field W — ¢; W)"~1W vanishes. In the second case we can re(8Ht-(42)
procedure for the volume field — ;W) 1w yielding aftern iterationsW” = 0 that
according to our assumption (that the dynamical system is regular) is not true. As a result
we arrived a(43) and by the simple interchange of indides> j we get

{ci, cjle — cilci, cj} = 0. (44)
Finally by comparing43) and (44)we obtain that the functiong are in involution with
respect to the both Poisson structures (sincg c;)

{ci,cjle ={ci,cj} =0 (45)
and according t¢18) the same is true for the integrals of motibf. O
Corollary 1. Each generator of non-Noether symmetry satisffigg(30)endows dynam-

ical system with the bi-Hamiltonian §tructu[13,3,4,8,10]—coup|e(W, W) of compatible
([W, W] = 0) Poisson([W, W] = [W, W] = 0) bivector fields

It often happens that conservation laws associated with the generator of non-Noether
symmetry appear to be functionally independent, involutive and ensure the integrability of
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the dynamical system. Such examples are especially interesting in the case of infinite-
dimensional Hamiltonian systems, where a single generator of non-Noether symmetry
yields infinite number of integrals of motion (note that, regardless the dimension of the
phase space, the generator of Noether symmetry reproduces only one conservation law).
Let us consider well known infinite-dimensional Hamiltonian system—Korteweg—de Vries
equation.

Example 1. KdV equation not only possesses infinite number of conservation laws in
involution, but also could be endowed with bi-Hamiltonian strucfrg, admits Lax pair
formulation and has many interesting geometric properties. Let us recall that the KdV
equation

U + Uxxx+ Uy =0 (46)
(hereu = u(t, x) is a smooth real-valued function subjected to the boundary conditions

u(t, £oo) = 0) is a Hamilton’sequation (5pn infinite-dimensional Poisson manifold with
corresponding Hamiltonian equal to

+o00 u3
h:/ <€—u>dx 47
—00
and Poisson bivector field

400 X
W = / dx— A —, v= / u(§) dg, (48)

whered/su denotes variational derivative with respeciitdObservables are smooth func-

tionals ofu and its spatial derivatives,, uxx, €tc. Each vector field generates infinitisimal

transformatiorg. of algebra of observables defined, for every functiangdby the equation
8e(F) = 1+ €E(F) + O(e). (49)

Likeinthefinite-dimensional case such atransformation s called symmetry of the Hamilton’s
equation if it commutes with time evolution operator

d d
8e (EF) = Ege(F)' (50)

Quite recently it appeared that KdV equation possesses hidden non-Noether syfinetry
generated by the vector field

400 12 S

—00
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(whereXy is the Hamiltonian part of symmetry generator, §&¢. This symmetry gives
rise to the well known infinite sequence of conservation laws of KdV equation

+00 +o0 oo 7,3
I(l)=/ u dx, 1(2):/ u? dx, 1(3)=/ <——u ) dx,
—0oQ —0o0 —0oQ 3
5
¥ = / (36u - —uu2 + uxx> dx,
—00
oo 7 35
1(5) 2[ (ﬁ 5_ 1_8u2 2 + 3 uu)z(x MXXX>
—00

too /7 35 7 35 10 4
1© =/ (2_16 6_ 18 ulu 2+§ 2y ix—3_6”x 3u U>2<xx+ 3“xx "‘xxxx) dx.
—00
(52)

It is easy to verify that the vector fielf satisfies conditior{30) and due toTheorem 3
(strictly speaking the Poisson manifoldiiheorems 1-& finite dimensional and extension

of the main results to the infinite-dimensional case requires additional explanation and
justification that lays outside the scope of present article) the conservation laws of KdV
equation are in involution. Functional independence of conservation laws is obvious so
in this case the symmetry is responsible for integrability. Accordingheorem 2this
symmetry canonically leads to a Lax pair, that appears to be known as KdV Lax pair:

L=+ tu, (53)
P =+ Ludy +uy), (54)
while the operatoR ; exactly reproduces Lenard recursion operator
- +oo ) 2 )
Rg = dx [ Suxx ® — + —udu @ — (55)
PSS du 3 du

Due to corollary ofTheorem 3the phase space of KdV equation is endowed with a
bi-Hamiltonian structur¢3] that coincides with the one discovered by Mdg#].

Another concept that is often used in theory of dynamical systems and could be re-
lated to the non-Noether symmetry is the bidifferential calculus (bicomplex approach).
Recently Dimakis and Muller-Hoissen applied bidifferential calculi to the wide range of
integrable models including KdV hierarchy, KP equation, self-dual Yang—Mills equation,
Sine—Gordon equation, Toda models, and non-linear Schrédinger and Liouville equations. It
turns out that these models can be effectively described and analyzed using the bidifferential
calculi[4,6,7,10]

Under the bidifferential calculus we mean the graded algebra of differential forms

2= fjsz(k) (56)

(220 denotes the spacebfdegree differential forms) equipped with a couple of differential
operators

d,d:® - k+D (57)
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satisfying & = d? = dd + dd = 0 conditions (se€5,7]). It is interesting that if generator

of the non-Noether symmetry satisfieg. (30)then we are able to construct an invariant
bidifferential calculus of a certain type. This construction is summarized in the following
theorem.

Theorem 4. Let(M, h) be a regular Hamiltonian system on the Poisson manifold M. Then
if the vector field E on M generates the non-Noether symmetry and sakisfi€30) the
differential operators

du = SH(W, dwW))), (58)
du = ¢RM(LE, W]Dww)]) (59)

form invariant bidifferential calculugd® = d? = dd + dd = 0) over the graded algebra of
differential forms on M

Proof. First of all we have to show that d ambare really differential operators, i.e. they
are linear maps fron2® into 2*+7 satisfy derivation property and are nilpotent ¢d

d? = 0). Linearity is obvious and follows from the linearity of the Schouten brackelt [
and @, @@1 maps. Then, ifs is ak-degree formdy maps it onk-degree multivector
field and the Schouten brackeW®,[@w (u)] and [[E, W]®w (u)] result the g + 1)-degree
multivector fields that are mapped to{ 1)-degree differential forms btgbg,l. So, d andi
are linear maps fron2® into 2*+1 . Derivation property follows from the same feature
of the Schouten bracket [] and linearity of®y, andq)v‘v1 maps. Now we have to prove the

nilpotency of d andl. Let us consider %l
dPu = oW, By (D (W, Dw @)]))]) = S (WIW, Sw@)]]) =0 (60)
as a result of the proper{2) and the Jacobi identity for,[-] bracket. In the same manner
d?u = @3 (LW, ENLW, E]l®w@)]]) =0 (61)
according to the propert{86) of [W, E] = W and the Jacobi identity. Thus, we have
proved that d and are differential operators (in fact d is ordinary exterior differential and
the expressiorfs8) is its well known representation in terms of Poisson bivector field). It

remains to show that the compatibility conditioti-¢ dd = 0 is fulfilled. Using definitions
of d, d and the Jacobi identity we get

(dd + dd) () = @ (LW, EJW]@w w)]) = 0 (62)
as far a§34)is satisfied. So, d andiform the bidifferential calculus over the graded algebra

of differentjal forms. It is also clear that the bidifferential calculusids invariant, since
both d andd commute with time evolution operat@f(h) = {, -}. O

Remark 3. Conservation laws that are associated with the bidifferential cal¢b8)sand
(59) and form Lenard scheme (sgge7]):

dr® = gr*+b (63)
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coincide with the sequence of integrals of mot{@9). Proof of this correspondence lay
outside the scope of present article, but could be done in the manner sinjdar to

Finally we would like to reveal some features of the oper&pr(24) and to show how
Frélicher—Nijenhuis geometry could arise in Hamiltonian system that possesses certain
non-Noether symmetry. From the geometric properties of the tangent-valued forms we
know[5] that the traces of powers of a linear operafarn tangent bundle are in involution
whenever its Frolicher—Nijenhuis torsidiiF) vanishes, i.e. whenever for arbitrary vector
fields X, Y the condition

T(F)(X,Y)=[FX,FY] — F(FX Y]+ [X,FY] — F[X,Y]) =0 (64)

is satisfied. Torsionless forms are also called Frolicher—Nijenhuis operators and are widely
used in theory of integrable moddHs]. We would like to show that each generator of
non-Noether symmetry satisfyif. (30)canonically leads to invariant Frélicher—Nijenhuis
operator on tangent bundle over the phase space. Strictly speaking we have the following
theorem.

Theorem 5. Let (M, h) be a regular Hamiltonian system on the Poisson manifold M. If
the vector field E on M generates the non-Noether symmetry and sdfigfi€30)then the
linear operator defined for every vector field X by equation

Re(X) = O (L@ (X)) — [E, X] (65)

is invariant Frolicher—Nijenhuis operator on M

Proof. Invariance ofRg follows from the invariance of th& defined by(24) (note that
for arbitrary 1-form vector field: and vector fieldX contractioniyu has the property
IRpxU = ix Rpu, SORg is actually transposed t®g). It remains to show that the condition
(30) ensures vanishing of the Frolicher—Nijenhuis torsigRz) of R, i.e. for arbitrary
vector fieldsX, Y

T(Re)(X,Y) = [Re(X), Re(Y)] — RE([RE(X), Y]

+[X, Re(M] — Re([X, Y]) = 0. (66)
First let us introduce the following auxiliary 2-forms:
w= @;Vl(W), ®® = Rpo, »*® = Rpo®. (67)

Using the realizatiorf58) of the differential d and the proper¢y) yields

do = & (W, W]) = 0. (68)
Similarly, using the propert{34) we obtain

do® = doy ((E, W]) — dLgw = &3 ([E, W]W]) — Lg do = 0. (69)
And finally, taking into account that® = Zq);Vl([E, W1]) and using the conditio(80), we
get

dw*® = 20, ([E[E, W]IW]) — 2dLgw® = —2Lf do® = 0. (70)
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So the differential form&, »®, »** are closed
do = do® = dw®® = 0. (71)

Now let us consider the contraction BfRg) (X, Y) andw.

ITRE)(X,N® = I[ReX,ReY]® — i[RpX,¥]®° — i[x,Rpy]@° + i[x,y]@*°

LRExiya). — iREyLXw. — LRExiya). + iyLREXw.
—Lxigyyo® +iryyLxw® +i[x yjo®*
=iyLxw®® — Lxiyw®® + i[X,Y]a)" =0, (72)

where we use25) and (26)the property of the Lie derivative

Lxiyw =iyLxw + i[x, y|® (73)
and the relations of the following type:

Lpyxw =dig,x0 +ig,x o = dixw® = Lyw® —ix do® = Lxo®. (74)

So we proved that for arbitrary vector fields Y the contraction off(Rg)(X, Y) andw
vanishes. But sinc@ bivector is non-degenerat@&(* # 0), its counter image

w=OGHW) (75)

is also non-degenerate and vanishing of the contra¢fidyimplies that the torsioff(Rg)
itself is zero. So we get

T(Re)(X,Y) =[Re(X), Re(Y)] — RE([RE(X), Y]
+[X, Re(M] — Re([X, Y])=0. O (76)

In summary let us note that the non-Noether symmetries form quite interesting class of
symmetries of Hamiltonian dynamical system and lead not only to a number of conservation
laws (that under certain conditions ensure integrability), but also enrich the geometry of the
phase space by endowing it with several important structures, such as Lax pair, bicomplex,
bi-Hamiltonian structure, Frolicher—Nijenhuis operators, etc. The present paper attempts
to emphasize deep relationship between different concepts used in construction of con-
servation laws and non-Noether symmetry. Example of KdV equation suggests that many
mysterious objects (for instance, Lenard recursion operator, Lax pair and bi-Hamiltonian
structure of KdV equation), that often carry no direct physical content and are considered
as purely mathematical constructions resulting the conservation laws, could be regarded as
a manifestation of the non-Noether symmetry.
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